அன்புசால் ஆசிரியர் பெருமக்களுக்கு வணக்கம் ..

கல்விக்குரலின் அடுத்த முயற்சியாக நம் அனைவரையும் ஒருங்கிணைக்கும் புதிய டெலகிராம் குரூப் உருவாக்கப்பட்டுள்ளது. இந்த குரூப்பில் கீழ்கண்ட லிங்க் மூலம் நீங்கள் இணையலாம்.அதற்கு முன் GOOGLE PLAY STORE ல் டெலகிராம் ஆப் இன்ஸ்டால் செய்து இருக்க வேண்டும்.

https://t.me/joinchat/NY8iCBcU-6hUiJ817Gy1qg

நீங்கள் எழுதும் LESSON PLAN மாறும் புதிய கற்பித்தல் உத்திகளை இந்த குரூப்பில் SHARE செய்யலாம்.

Government Orders for Teachers

www.kalvigo.com

Forms for Teachers

www.padivam.com

அனைத்து செய்திகளும் உடனுக்குடன்

www.kalvikural.com

WhatsApp 9944177387

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER - 1

		MODEL Q	DESTION LAID.		in an Maria	_
rime A	Allowed: 15 Min + 3.	00 Hours]			mum Marks:90)
	ctions: (a)	Check the quest	tion paper for fairness	s of printing. If there	is any	
роч				ervisor immediately.		
	(b)	Use Blue or Bla	ack ink to write and u	inderline and pencil t	o draw	
,		diagrams.		niv of Past s		
			PART – I		a vid (a)	`
Note:	(i) All questions ar		ज्यं कर्ता (וכברה חלשת	$20\times1=20$	
	(ii) Choose the corroption code and	rect or most suit I the corresponding	able answer from the ng answer.	e given four alterna	tives. Write the	е
1.	If A and B are orthogonal	gonal, then $(AB)^T$	(AB) is		0 = 2 (0)	
	(a) A	(b) <i>B</i>	(c) I	(d) A^T		
2.	If A is a non-singula	ar matrix such tha	at $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then	$n (A^T)^{-1} =$	m # 0 (nz	
	(a) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$		(c) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$		_	
3.	$i^{n} + i^{n+1} + i^{n+2} + i^{n+2}$ (a) 0	is (b) 1	(c) -1	(d) i	*	
4.	The product of all for	our values of cos	$\left(\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^4$ is	(v.enu + unex)	if The value	
	(a) -2 A polynomial equation	(b) -1	(c) 1	(d) 2	ini M. Antho	
	(a) n distinct roots(c) n imaginary root	s	(b) <i>n</i> real roots (d) at most one	root.	restados - S. (a)	
6.	If $\sin^{-1} x + \sin^{-1} y$			to Sales will set to not	h lorseff .51	
	3	(b) $\frac{\pi}{3}$		(d) π		
7.	The equation of the	directrix of the pa	arabola $y^2 = x + 4$ is	1 12 Tell 1 1 1		

Model Question Papers

iii)

5&IT

ங்க€

छ्ठा

ஆன

MIL

ПĽ

நி

n(

சிக

ിഖ

(a)
$$15 < m < 65$$

(b)
$$35 < m < 85$$

(a)
$$15 < m < 65$$
 (b) $35 < m < 85$ (c) $-85 < m < -35$

(d)
$$-35 < m < 15$$

9. If the line $\frac{x-1}{3} = \frac{y-2}{4} = \frac{z-3}{\lambda}$ is perpendicular to the plane $\vec{r} \cdot (2\hat{i} + 3\hat{j} + 4\hat{k}) = 0$, then the value of λ is

(a)
$$-\frac{13}{4}$$
 (b) -13

(b)
$$-13$$

$$(c) -4$$

(d)
$$-\frac{1}{4}$$

10. Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is

11. The curve $y = ax^4 + bx^2$ with ab > 0

- (a) has no horizontal tangent
- (b) is concave up

(c) is concave down

(d) has no points of inflection

12. The function $f(x) = \sqrt[3]{4-x^2}$ has a vertical tangent at

(a)
$$x = 0$$

(b)
$$x = 2$$
 and $x = -2$

(c)
$$x = 0, x = 2$$
 and $x = -2$

(d)
$$x = 1$$
 and $x = -1$

13. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is

 $14. \quad \int e^{-3x} x^2 \ dx =$

(a)
$$\frac{7}{27}$$
 (b) $\frac{5}{27}$

(b)
$$\frac{5}{27}$$

(c)
$$\frac{4}{27}$$

(d)
$$\frac{2}{27}$$

15. The value of $\int_{0}^{\pi} (\sin x + \cos x) dx$

16. P is the amount of certain substance left in after time t. If the rate of evaporation of the substance is proportional to the amount remaining, then (where k > 0)

(a)
$$P = ce^{kt}$$

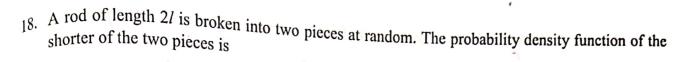
(b)
$$P = ce^{-kt}$$

(c)
$$P = ckt$$

(d)
$$Pt = c$$

17. The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left(\frac{y}{x}\right)}{\phi\left(\frac{y}{x}\right)}$ is

$$\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left(\frac{y}{x}\right)}{\phi'\left(\frac{y}{x}\right)} \text{ is}$$


(a)
$$x\phi\left(\frac{y}{x}\right) = k$$
 (b) $\phi\left(\frac{y}{x}\right) = kx$ (c) $y\phi\left(\frac{y}{x}\right) = k$

(b)
$$\phi\left(\frac{y}{x}\right) = kx$$

(c)
$$y\phi\left(\frac{y}{x}\right) = k$$

(d)
$$\phi\left(\frac{y}{x}\right) = ky$$

)[[

$$f(x) = \begin{cases} \frac{1}{l} & 0 < x < l \\ 0 & l \le x < 2l \end{cases}$$

The mean and variance of the shorter of the two pieces are respectively

(a)
$$\frac{l}{2}$$
, $\frac{l^2}{3}$

(b)
$$\frac{l}{2}$$
, $\frac{l^2}{6}$ (c) l , $\frac{l^2}{12}$

(c)
$$l, \frac{l^2}{12}$$

(d)
$$\frac{l}{2}$$
, $\frac{l^2}{12}$

19. If X is a binomial random variable with expected value 6 and variance 2.4, Then $P\{X=5\}$ is

(a)
$$\binom{10}{5} \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^4$$
 (b) $\binom{10}{5} \left(\frac{3}{5}\right)^5$ (c) $\binom{10}{5} \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^6$ (d) $\binom{10}{5} \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5$

(b)
$$\binom{10}{5} \left(\frac{3}{5}\right)$$

(c)
$$\binom{10}{5} \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^6$$

(d)
$$\binom{10}{5} \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5$$

20. The operation * is defined by $a*b = \frac{ab}{7}$. It is it not a binary operation on

(a)
$$\mathbb{Q}^+$$

PART - II

Note: (i) Answer any SEVEN questions.

$$7 \times 2 = 14$$

(ii) Question number 30 is compulsory.

21. Prove that
$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 is orthogonal.

22. Find the modulus of $\frac{1-i}{3+i} + \frac{4i}{5}$.

23. Find the value of $\tan^{-1} \left(\tan \left(-\frac{\pi}{6} \right) \right)$

24. Find the centre and radius of the circle $3x^2 + 3y^2 - 12x + 6y - 9 = 0$.

25. Verify whether the line $\frac{x-3}{-4} = \frac{y-4}{-7} = \frac{z+3}{12}$ lies in the plane 5x-y+z=8.

26. Evaluate: $\int_{0}^{\log 2} e^{-|x|} dx$

27. Determine the order and degree (if exists) of the differential equation

$$\left(\frac{d^2y}{dx^2}\right)^2 + \left(\frac{dy}{dx}\right)^2 = x\sin\left(\frac{d^2y}{dx^2}\right).$$

(ii)

iii)

கோ

ख्या गुक्छ

601

ПLL

- 28. Suppose a discrete random variable can only take the values 0, 1, and 2. The probability function is defined by $f(x) = \begin{cases} \frac{x^2 + 1}{k}, & \text{for } x = 0, 1, 2 \\ 0, & \text{otherwise} \end{cases}$. Find the value of k.
- 29. Verify the associative property under the binary operation * defined by $a*b=a^b$, $\forall a,b \in \mathbb{N}$
- 30. Evaluate $\lim_{x\to 0} \frac{xe^x \sin x}{x}$

PART-III

Note:

(i) Answer any SEVEN questions.

7×3=2|

- (ii) Question number 40 is compulsory.
- 31. Find the rank of the matrix by row reduction method: $\begin{bmatrix} 1 & 1 & 1 & 3 \\ 2 & -1 & 3 & 4 \\ 5 & -1 & 7 & 11 \end{bmatrix}$
- 32. Show that the equation $z^3 + 2\overline{z} = 0$ has five solutions.
- 33. Solve the equation $x^3 5x^2 4x + 20 = 0$.
- 34. If the equation $3x^2 + (3-p)xy + qy^2 2px = 8pq$ represents a circle, find p and q. Also determine the centre and radius of the circle.
- 35. Find the points on the curve $y = x^3 6x^2 + x + 3$ where the normal is parallel to the line x + y = 1729..
- 36. If $u(x, y) = \frac{x^2 + y^2}{\sqrt{x + y}}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \frac{3}{2}u$.
- 37. Evaluate: $\int_{0}^{1} \frac{2x}{1+x^2} dx$
- 38. Solve: $\cos x \cos y \, dy \sin x \sin y \, dx = 0$
- 39. If μ and σ^2 are the mean and variance of the discrete random variable X, and $E(X+3)=\emptyset$ and $E(X+3)^2=116$, find μ and σ^2 .
- 40. If $\vec{a}, \vec{b}, \vec{c}$ are three vectors prove that $\left[\vec{a} + \vec{b}, \vec{b} + \vec{c}, \vec{c} + \vec{a}\right] = 2\left[\vec{a}, \vec{b}, \vec{c}\right]$

PART - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

41. (a) Examine the consistency of the system of equations 4x+3y+6z=25, x+5y+7z=13, 2x+9y+z=1. If it is consistent then solve.

(OR)

(b) If z = x + iy and $\arg\left(\frac{z - i}{z + 2}\right) = \frac{\pi}{4}$, then show that $x^2 + y^2 + 3x - 3y + 2 = 0$.

Model Question Papers

- Solve the equation: $6x^4 35x^3 + 62x^2 35x + 6 = 0$. (OR)
 - (b) At a water fountain, water attains a maximum height of 4m at horizontal distance of 0.5 m from its origin. The flow is from the origin and the path of water is a parabola open upwards, find the height of water at a horizontal distance of 0.75m from the point of origin.
- 43. (a) If $\vec{a} = \hat{i} \hat{j}$, $\vec{b} = \hat{i} \hat{j} 4\hat{k}$, $\vec{c} = 3\hat{j} \hat{k}$ and $\vec{d} = 2\hat{i} + 5\hat{j} + \hat{k}$, verify that $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a}, \vec{b}, \vec{d}]\vec{c} [\vec{a}, \vec{b}, \vec{c}]\vec{d}$

(OR)

- (b) Find the vector and Cartesian equations of the plane $\vec{r} = (6\hat{i} \hat{j} + \hat{k}) + s(-\hat{i} + 2\hat{j} + \hat{k}) + t(-5\hat{i} 4\hat{j} 5\hat{k}).$
- 44. (a) A hollow cone with base radius a cm and height b cm is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times volume of the cone.

(OR)

- (b) Expand $\log(1+x)$ as a Maclaurin's series upto 4 non-zero terms for $-1 < x \le 1$.
- 45. (a) If u = xyz, $x = e^{-t}$, $y = e^{-t} \sin t$, $z = \sin t$ find $\frac{du}{dt}$

inne de demolinaria Asia (OR)

- (b) Solve: $(y e^{\sin^{-1}x}) \frac{dx}{dy} + \sqrt{1 x^2} = 0$.
- 46. (a) A multiple choice examination has ten questions, each question has four distractors with exactly one correct answer. Suppose a student answers by guessing and if X denotes the number of correct answers, find (i) binomial distribution (ii) probability that the student will get seven correct answers (iii) at least one correct answer.

(OR)

- (b) Show that $p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$.
- ⁴⁷. (a) Find the area enclosed by the curve $y = -x^2$ and the straight line x + y + 2 = 0.

(OR

(b) If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z < 1, then show that $x^2 + y^2 + z^2 + 2xyz = 1$.

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER – 2

[Maximum Marks:90

Time Allowed: 15 Min + 3.00 Hours]

Instructions:

- Check the question paper for fairness of printing. If there is any (a) lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

PART – I

(i) All questions are compulsory.

 $20 \times 1 = 20$

1. If
$$A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
, then $9I - A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$

- (a) A^{-1}
- (b) $\frac{A^{-1}}{2}$ (c) $3A^{-1}$
- (d) $2A^{-1}$

2. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then adj(adj A) is

(a)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$

- 3. The area of the triangle formed by the complex numbers z, iz and z+iz in the Argand's diagram is
 - (a) $\frac{1}{2}|z|^2$
- (b) $|z|^2$ (c) $\frac{3}{2}|z|^2$
- 4. All complex numbers z which satisfy the equation $\left| \frac{z-6i}{z+6i} \right| = 1$ lie on the
- (b) imginary axis

- (d) ellipse
- 5. If $\cot^{-1} 2$ and $\cot^{-1} 3$ are two angles of a triangle, then the third angle is
- (b) $\frac{3\pi}{4}$ (c) $\frac{\pi}{6}$

(c) circle

- 6. The range of $\sec^{-1} x$ is
 - (a) $\left[0,\pi\right] \setminus \left\{\frac{\pi}{2}\right\}$ (b) $\left[0,\pi\right]$ (c) $\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$ (d) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$

- 7. P(x, y) be any point on $16x^2 + 25y^2 = 400$ with foci $F_1(3, 0)$ and $F_2(-3, 0)$ then $PF_1 + PF_2$ is
 - (a) 8
- (b) 6
- (c) 10

(d) 12

1	ocus of Pis	$(m) \sim (pc/r_p) = (d)$	(a) $2x - 1 = 0$	x are at right angles then the (d) $x = 1$
9. ′	The locus of the poin	nt whose distance from	om $(-2,0)$ is $\frac{2}{3}$ time	s its distance from the line
	$x = -\frac{9}{2}$ is		m A197	
		(b) a hyperbola line $\vec{r} = (\hat{i} + 2\hat{j} - 3\hat{k})$	(c) an ellipse $ + t \left(2\hat{i} + \hat{j} - 2\hat{k} \right) $ and	(d) a circle If the plane $\vec{r} \cdot (\hat{i} + \hat{j}) + 4 = 0$
11.5	is (a) 0° If the rate of increase	(b) 30° H = T of the radius of a circ	× > 1450	(d) 90° ne rate of increase of its area
	when the radius is 20 c (a) 10π	,III, WIII O	(c) 200π	(d) 400π
12.	Angle between $y^2 = x^2$	and $x^2 = y$ at the original $(b) \tan^{-1} \left(\frac{4}{3}\right)$	(c) $\frac{\pi}{2}$	(d) $\frac{\pi}{4}$ maps at an 1
	y 0	then $\frac{\partial W}{\partial x}$ is equal to	[2/] DOSIG 10 A	Any the state of t
(4.8).	(a) $x^y \log x$	(b) $y \log x$	(c) yx	(d) $x \log y$ with band of
130114567	(a) 4	(b) 1 the curve $v^2 = 4x$	(c) 3_{111} and the lines $x = 1, x = 1$	$\begin{array}{c} \text{(d) 2} \\ = 4 \text{ and } x - \text{axis in the first} \end{array}$
	quadrant is	(b) 17	(c) $\frac{28}{3}$	$ (d) \frac{31}{3} $
16.	If the solution of the d	ifferential equation $\frac{d}{d}$	$\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represents	a circle, then the value of a is
				(d) -1 standard deviation
	of X 1S (a) 6	(b) 4	(c) 3	constant c ,
	Suppose that X takes $P(X=i) = k P(X=i)$	-1) for $i = 1, 2$ and $P($	(X=0)=1. Then the	value of K is
21	(a) 1	(b) 2	(c) 3	(d) 4 Model Question Papers
				Scanned by CamScanner

- 19. Which one is the inverse of the statement $(p \lor q) \to (p \land q)$?

 (a) $(p \land q) \to (p \lor q)$ (b) $\neg (p \lor q) \to (p \land q)$
 - (a) $(p \land q) \rightarrow (p \lor q)$

(c) $(\neg p \lor \neg q) \to (\neg p \land \neg q)$

- 20. Which one of the following statements has the truth value T?
 - (a) $\sin x$ is an even function.
 - (b) Every square matrix is non-singular
 - (c) The product of complex number and its conjugate is purely imaginary
 - (d) $\sqrt{5}$ is an irrational number

PART - II

Note: (i) Answer any SEVEN questions.

- (ii) Question number 30 is compulsory.
- 21. Find z^{-1} , if z = (2+3i)(1-i)
- 22. Find the square root of -6+8i
- 23. Find the principal value of $\csc^{-1}\left(-\sqrt{2}\right)$
- 24. Find the equation of the parabola whose end points of the latus rectum are (4,-8) and (4,8)centre is (0,0) and open rightward.
- 25. A particle is fired straight up from the ground to reach a height of s feet in t seconds, who $s = 128t - 16t^2$. Compute the maximum height of the particle reached?
- 26. If $f(x,y) = x^3 3x^2 + y^2 + 5x + 6$, then find f_x at (1,-2)
- 27. Find the differential equation of the curve represented by $xy = ae^x + be^{-x} + x^2$.
- 28. Establish the equivalence property: $p \rightarrow q \equiv \neg p \lor q$
- 29. Let * be defined on \mathbb{R} by a*b=a+b+ab-7. Is *binary on \mathbb{R} .
- 30. Evaluate: $\int_{0}^{2} \frac{\sin x}{1 + \cos^{2} x} dx$

(i) Answer any SEVEN questions. Note:

- (ii) Question number 40 is compulsory.
- 31. Find the value of $\sum_{k=1}^{8} \left[\cos \frac{2k\pi}{9} + i \sin \frac{2k\pi}{9} \right].$

- 32. Show that the equation $x^9 5x^5 + 4x^4 + 2x^2 + 1 = 0$ has at least 6 imaginary solutions.
- 33. Prove that the length of the latus rectum of the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $\frac{2b^2}{a}$.
- 34. Find the altitude of a parallelepiped determined by the vectors $\vec{a} = -2i + 5j + 3k$, $\vec{b} = i + 3j 2k$ and $\vec{c} = -3i + j + 4k$ if the base is taken as the parallelogram determined by \vec{b} and \vec{c} .
- 35. Examine the concavity for the function $f(x) = x^4 4x^3$.
- 36. Show that the value in the conclusion of the mean value theorem for $f(x) = Ax^2 + Bx + C$ on any interval [a,b] is $\frac{a+b}{2}$.
- 37. Evaluate: $\int_{0}^{\frac{\pi}{2}} (\sin^2 x + \cos^4 x) dx$.
- 38. Assume that a spherical rain drop evaporates at a rate proportional to its surface area. Form a differential equation involving the rate of change of the radius of the rain drop.
- 39. The probability distribution of a random variable is given below

X = x	0	1	2	3	4	5	6	7
P(X =	x) 0	k	2k	2k	3k	k^2	2 k²	$7k^2+k$

Then find P(0 < X < 4).

Then find P(0 < X < 4). 40. If $A = \begin{bmatrix} 3 & -2 \\ \lambda & -2 \end{bmatrix}$, find the value of λ so that $A^2 = \lambda A - 2I$.

Note: Answer all the questions.

 $7 \times 5 = 35$

- 41. (a) Investigate for what values of λ and μ the system of linear equations x+2y+z=7, $x+y+\lambda z=\mu$, x+3y-5z=5 has (i) no solution (ii) a unique solution (OR)
 - (b) Find the sum of squares of the roots of the equation $2x^4 8x^3 + 6x^2 3 = 0$.
- 42. (a) Evaluate: $\sin \left(\sin^{-1} \left(\frac{3}{5} \right) + \sec^{-1} \left(\frac{5}{4} \right) \right)$
 - (b) Find the foci and vertices of the hyperbola $4x^2 24x 25y^2 + 250y 489 = 0$.
- 43. (a) Find the vector and cartesian equations of the plane passing through the point (1,-2,4) and perpendicular to the plane x+2y-3z=11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}$.

Model Question Papers

(OR)

- (b) Find the foot of the perpendicular drawn from the point (5,4,2) to the line $\frac{x+1}{2} = \frac{y-3}{3} = \frac{z-1}{-1}$. Also, find the equation of the perpendicular.
- 44. (a) Find intervals of concavity and points of inflexion for the function

$$f(x) = \frac{1}{2}(e^x - e^{-x})$$

(OR)

- (b) Evaluate: $\int_{0}^{2a} x^2 \sqrt{2ax x^2} dx$
- 45. (a) Find the area of the region bounded between the parabola $x^2 = y$ and the curve y = |x|. is Assume that a spherical rain drop evagor(SO) at raid pro-
 - (b) The equation of electromotive force for an electric circuit containing resistance and self-inductance is $E = Ri + L\frac{di}{dt}$, where E is the electromotive force given to the circuit, R the resistance and L, the coefficient of induction. Find the current i at time t when E = 0.
- 46. (a) The probability density function of X is given by $f(x) = \begin{cases} ke^{-\frac{x}{3}} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$ Find (i) the value of k(ii) P(X < 3).

(OR)

(b) Verify whether the compound proposition $(p \rightarrow q) \leftrightarrow (\neg p \rightarrow q)$ is a tautology or contradiction or contingency stays and a base A to soulier near not suggisted (a) to

(b) Find the find and vertices of the hyperbola 4x - 24x - 25x + 250x - 489 = 0

(3.4a) Find the vector and amount equations of the plans pussing through the point (1,7

perpendicular to desplane x + 2v - 3z - 11 and provided to the time -

47. (a) Solve $z^4 = 1 - \sqrt{3}i$

(b) If
$$f(x,y) = \log \sqrt{x^2 + y^2}$$
, show that $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$

 $\mathbb{Q}_{(8)}$ Evaluate: $\sin \left| \sin \left| \frac{3}{8} \right| + \sec \left| \frac{5}{4} \right| \right|$

HIGHER SECONDARY SECOND YEAR MATHEMATICS

MODEL QUESTION PAPER - 3

fime Allowed: 15 Min + 3.00 Hours]

instructions:

(a) Check the question paper for fairness of printing. If there is any [Maximum Marks:90 lack of fairness, inform the Hall Supervisor immediately.

(b) Use Blue or Black ink to write and underline and pencil to draw

PART - I

(i) All questions are compulsory. Note:

(ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.

(a)
$$\left(\cos^2\frac{\theta}{2}\right)A$$

(b)
$$\left(\cos^2\frac{\theta}{2}\right)A^n$$

(c)
$$(\cos^2 \theta)I$$

(d)
$$\left(\sin^2\frac{\theta}{2}\right)A$$

2. If $x^a y^b = e^m, x^c y^d = e^n, \Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}, \Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$, then the values of x and y are respectively, at 19

(a)
$$e^{(\Delta_2/\Delta_1)}$$
, $e^{(\Delta_3/\Delta_1)}$

(a)
$$e^{(\Delta_2/\Delta_1)}$$
, $e^{(\Delta_3/\Delta_1)}$ (b) $\log(\Delta_1/\Delta_3)$, $\log(\Delta_2/\Delta_3)$

(c)
$$\log(\Delta_2/\Delta_1), \log(\Delta_3/\Delta_1)$$

(d))
$$e^{(\Delta_1/\Delta_3)}, e^{(\Delta_2/\Delta_3)}$$

3. If z = x + iy is a complex number such that |z + 2| = |z - 2| then the locus of z is

(a) real axis

(b) imaginary axis

(c) ellipse

4. The principal argument of the complex number $\frac{(1+i\sqrt{3})^2}{4i(1-i\sqrt{3})}$ is

(a) $\frac{2\pi}{3}$ (b) (b) $\frac{\pi}{6}$

 $(c)\frac{5\pi}{6}$

5. The polynomial equation $x^3 + 2x + 3 = 0$ has

(b) one positive and two imaginary roots

(a) one negative and two real roots

(d) no solution

(c) three real roots

Model Question Papers

6.
$$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$$
 is equal to

(a) $\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right)$ (b) $\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right)$ (c) $\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right)$ (d) $\tan^{-1}\left(\frac{1}{2}\right)$

7. The vertex of the parabola $x^2 = 8y - 1$ is

(a)
$$\left(-\frac{1}{8}, 0\right)$$
 (b) $\left(\frac{1}{8}, 0\right)$ (c) $\left(-6, \frac{9}{2}\right)$ (d) $\left(\frac{9}{2}, -6\right)$

8. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is

(a)
$$2ab$$
 (b) ab (c) \sqrt{ab} (d) $\frac{a}{b}$

9. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the value of $\lambda + \mu$ is

(a) 0

(b) 1

(c) 6

(d) 3

10. If the distance of the point (1,1,1) from the origin is half of its distance from the plane x+y+z=k, then the values of k are

(a)
$$\pm 3$$
 (b) ± 6 (c) $-3, 9$ (d) $3, -9$

11. If x+y=k is a normal to the parabola $y^2=16x$, then the value of k is

12. The number given by the Mean value theorem for the function $\frac{1}{x}$, $x \in [1,9]$ is

(a) 2 (b) 2.5 (c)
$$3^{x-1}$$
 (d) 3.5

13. If $f(x) = \frac{x-1}{x+1}$, then its differential is given by

(a)
$$\frac{2}{(x+1)^2} dx$$
 (b) $-\frac{2}{(x+1)^2} dx$ (c) $\frac{x}{(x+1)^2} dx$ (d) $\frac{-x}{(x+1)^2} dx$

14. If $\int_{0}^{x} f(t)dt = x + \int_{x}^{1} tf(t)dt$, then the value of f(1) is no one to manage Lagrang and

(a)
$$\frac{1}{2}$$
 $\frac{\pi}{4}$ (b) 2 $\frac{\pi}{4}$ (c) 1 $\frac{3}{4}$

15. The value of $\int_{0}^{1} \log \left(\frac{x}{1-x}\right) dx$ and $\int_{0}^{1} \log \left(\frac{x}{1-x}\right) dx$ are positive and $\int_{0}^{1} \log \left(\frac{x}{1-x}\right) dx$ and $\int_{0}^{1} \log \left(\frac{x}{$

N

6.	The degree of the di	fferen	tial equa	ation $y(x) = 1 + \frac{dy}{dx} + \frac{1}{1 \cdot 2} \left(\frac{dy}{dx}\right)^2$	1001 of (A.)3
	(a) 2	(b)	3	$dx + 1 \cdot 2 \left(\frac{1}{dx}\right)$	$+\frac{1}{1\cdot 2\cdot 3}\left(\frac{dy}{dx}\right)+$ is
	The nonulation D:			(c) 1	(4)

17. The population P in any year t is such that the rate of increase in the population is proportional

(a)
$$P = ce^{kt}$$
 (b) $P = ce^{-kt}$ (c) $P = ckt$ (d) $P = ckt$

18. If the mean of a binomial distribution is 5 and its variance is 4, then the value of n and p are

(a)
$$\left(\frac{1}{5}, 25\right)$$
 (b) $\left(25, \frac{1}{5}\right)$ (c) $\left(25, \frac{4}{5}\right)$ (d) $\left(\frac{4}{5}, 25\right)$

19. The probability function of a random variable is defined as:

x	-2	-1	0	11-12/1	2
f(x)	k	2 <i>k</i>	3 <i>k</i>	4 <i>k</i>	5 <i>k</i>

Then E(X) is equal to:

(a)
$$\frac{1}{15}$$
 (b) $\frac{1}{10}$ (c) $\frac{1}{3}$

20. Which one is the inverse of the statement $(p \lor q) \to (p \land q)$?

(a)
$$(p \land q) \rightarrow (p \lor q)$$
 (b) $\neg (p \lor q) \xrightarrow{\downarrow} (p \land q) \xrightarrow{\downarrow} (p \land q)$

(c)
$$(\neg p \lor \neg q) \to (\neg p \land \neg q)$$
 (d) $(\neg p \land \neg q) \to (\neg p \lor \neg q)$

Note: (i) Answer any SEVEN questions. $7 \times 2 = 14$

(ii) Question number 30 is compulsory.

21. Show that
$$\left(2+i\sqrt{3}\right)^{10}_{1112} + \left(2-i\sqrt{3}\right)^{10}_{1112}$$
 is real

22. Find the value of
$$\sin^{-1}\left(\sin\left(\frac{5\pi}{4}\right)\right)$$

23. Obtain the equation of the circle for which (3,4) and (2,-7) are the ends of a diameter.

24. Find the intercepts cut off by the plane $\vec{r} \cdot (6\hat{i} + 4\hat{j} - 3\hat{k}) = 12$ on the coordinate axes.

25. For the function $f(x) = x^4 - 2x^2$, find all the values of c in (-2,2) such that f'(c) = 0

26. Evaluate: $\int_{0}^{\frac{\pi}{2}} \sin^{10} x dx$. and Find the magnetiale and direction cosines of the moreon about the pairs [0, -1, 3) of a force where line of action passes through the origin

- 27 Show that the differential equation for the function $y = e^{-x} + mx + n$, where m and n are arbitrary constants is $e^{x} \left(\frac{d^{2}y}{dx^{2}} \right) 1 = 0$.
- 28. Find the mean of the distribution $f(x) = \begin{cases} 3e^{-3x}, & 0 < x < \infty \\ 0, & elsewhere \end{cases}$
- 29. On \mathbb{Z} , define \otimes by $(m \otimes n) = m^n + n^m : \forall m, n \in \mathbb{Z}$. Is \otimes binary on \mathbb{Z} ?
- 30. If $A = \begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 0 \\ 2 & 5 \end{bmatrix}$, find adj(AB).

PART-III

Note: (i) Answer any SEVEN questions.

 $7 \times 3 = 21$

- (ii) Question number 40 is compulsory.
- 31. Solve the following system of linear equations by matrix inversion method 2x-y=8; 3x+2y=-2
- 32. Find the value of $\frac{\cos\frac{\pi}{6} + i\sin\frac{\pi}{6}}{\cos\frac{\pi}{3} i\sin\frac{\pi}{3}}$
- 33. Find the equation of the hyperbola with foci $(\pm 3,5)$ and eccentricity e=2.
- 34. Find the cartesian equation of the plane passing through the line of intersection of the planes $\vec{r} \cdot (2\hat{i} 7\hat{j} + 4\hat{k}) = 3$ and 3x 5y + 4z + 11 = 0, and the point (-2,1,3).
- 35. Prove that the function $f(x) = x \sin x$ is increasing but not strictly on the real line. Also discuss for the existence of local extrema.
- 36. If $U = \log(x^3 + y^3 + z^3)$, find $\frac{\partial U}{\partial x} + \frac{\partial U}{\partial y} + \frac{\partial U}{\partial z}$.
- 37. Evaluate: $\int_{0}^{\pi} x^{2} \cos nx dx$, where *n* is a positive integer. I and the large equation of the lar
- 38. Solve: $\frac{dy}{dx} = e^{x+y} + x^2 e^{x^3+y}$
- 39. The mean and variance of a binomial variate X are respectively 2 and 1.5. Find P(X=0).
- 40. Find the magnitude and direction cosines of the moment about the point (0,-2,3) of a force $\hat{i}+\hat{j}+\hat{k}$ whose line of action passes through the origin.

$$7 \times 5 = 35$$

- PART-IV PART-IV (OR)

 (a) If $ax^2 + bx + c$ is divided by x+3, x-5 and x-1, the remainders are 21,61 and 9 respectively. Find a, b and c. (b) Simplify: $(-\sqrt{3}+3i)^{31}$ is a second of logic point and the second of some second of the sec

 - 42. (a) Solve the equation $x^4 10x^3 + 26x^2 10x + 1 = 0$. (OR)
 - (b) Solve for $x : \tan^{-1} x + 2 \cot^{-1} x = \frac{2\pi}{3}$
 - 43. (a) For the ellipse $4x^2 + y^2 + 24x 2y + 21 = 0$, find the centre, vertices, foci and the length of latus rectum. (OR)
 - (b) By vector method, prove that $\cos(\alpha+\beta) = \cos\alpha\cos\beta \sin\alpha\sin\beta$.
 - 44 (a) Find the absolute extrema of the function $f(x) = 3x^4 4x^3$ on the interval [-1,2].

- (AO) then the possible value(s) of the determinant P is (b) For the function $f(x, y) = \frac{3x}{y + \sin x}$, find f_x , f_y , and show that $f_{xy} = f_{yx}$.
 - 45 (a) Using integration find the area of the region bounded by triangle ABC, whose vertices A, B, and C are (-1,1), (3, 2), and (0,5) respectively.
 - (b) Solve: $y^2 x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$

 $\frac{nb}{E} = (b)$

46. (a) The cumulative distribution function of a discrete random variable is given by

F(x) =
$$\begin{cases} 0 & -\infty < x < -1 \\ 0.15 & -1 \le x < 0 \\ 0.35 & 0 \le x < 1 \end{cases}$$

$$0.60 & 1 \le x < 2 \\ 0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

$$0.85 & 2 \le x < 3 \\ 1 & 0 \le x < 1 \end{cases}$$

Find (i) the probability mass function (ii) P(X < 1) and (iii) $P(X \ge 2)$

- (b) Using truth table check whether the statements $\neg (p \lor q) \lor (\neg p \land q)$ and $\neg p$ are logically
- 47. (a) Find the shortest distance between the straight lines $\frac{x-6}{1} = \frac{2-y}{2} = \frac{z-2}{2}$ and x+4 v 1-z
 - (b) Prove that among all the rectangles of the given area square has the least perimeter.
 - **Model Question Papers**

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER - 4

Time Allowed: 15 Min + 3.00 Hours]

[Maximum Marks:90

Instructions:

- (a) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
- (b) Use Blue or Black ink to write and underline and pencil to draw diagrams.

Note:

(i) All questions are compulsory.

- (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1. The adjoint of 3×3 matrix P is $\begin{vmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{vmatrix}$, then the possible value(s) of the determinant P_{is}

(b) -3 (c) ± 3

2. If $x = \frac{-1 + i\sqrt{3}}{2}$ then the value of $x^2 + x + 1$ (a) 2 and nevigui side (b) $\frac{1}{2}$ obtain attraction (c) 0 denote note that be write (d) 1 and (f)

3. The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is

(a) $cis \frac{2\pi}{2}$ (b) $cis \frac{4\pi}{3}$ (c) $-cis \frac{2\pi}{3}$

(d) $-cis\frac{4\pi}{2}$

- 4. A polynomial equation in x of degree n always has
 - (a) n distinct roots (b) n real roots (c) n imaginary roots (d) atmost one root

5. $\sin^{-1}(\cos x) = \frac{\pi}{2} - x$ is valid for

(a) $-\pi \le x \le 0$ (b) $0 \le x \le \pi$ (c) $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ (d) $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ 6. If $\cot^{-1}\left(\sqrt{\sin\alpha}\right) + \tan^{-1}\left(\sqrt{\sin\alpha}\right) = u$, then $\cos 2u$ is equal to

(a) $\tan^2 \alpha$

(b) 0

(c)-1

(d) $\tan 2\alpha$

7.	The locus of a point w	hose distance f	rom (-	$(2,0)$ is $\frac{2}{3}$ time	ics its dista	nce fro	om the line	
	$x = -\frac{9}{2}$ is		huet J					
	(a) a parabola	(b) a hyperbol	a	(c) an ellipse		(d) a c		i a
8.	If $P(x,y)$ be any point	nt on $4x^2 + 9$	$v^2 = 36$, then the sum	of the dista	inces o	f P from	the points
	$(\sqrt{5},0)$ and $(-\sqrt{5},0)$	is	973 m					
	(a) 4	(b) 8	90 798	(c) 6		(d) 18		
9.	(a) 4 If the plane $x + \alpha y + \alpha$	z - 8 = 0 has c	qual int	ercepts on the	coordinate	axes, t	he value o	of α is
	(a) 1	(b) 2	ALC: AND	(c) 8		(d) $\frac{1}{8}$		
10	If the planes $\vec{r} \cdot (2\hat{i} -$	$\lambda \hat{i} + \hat{k} = 3$ and	$\vec{r} \cdot (4\hat{i})$	$+\hat{j}-\mu\hat{k}=5$	are paralle	l, then	the value	of λ and
10.	μ are an interpretation of the state of t	Thirealin This	might)	. blekk per				
		(b) $-\frac{1}{2}$,2		$\frac{4}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	12 Fr 8 - 2	(d) $\frac{1}{2}$.2	
(a) $\frac{1}{2}$, -2	(b) $-\frac{1}{2}$, 2		(c) $-\frac{1}{2}$, $-\frac{1}{2}$	any v s r	2		airean bu
11.	The position of a $s(t) = 3t^2 - 2t - 8$. For	particle movin or what values o	g along of t the	g a horizontal particle is not	moving?	any ti	me I is	given by
	(a) 0			(c) 1		(d) 3		
12.	The minimum value	of the function	3-x	77 15				
		(1-) 2		(c) 6	Miles Off I	(d) 9	off the	tangent is
13.	(a) 0 The abscissa of the	point on the cu	rve f($x) = \sqrt{8-2x}$	at which t	ne sioj	pe of the	tangent is
	-0.25 ?	(b) -4		(c) -2	el bill abov	(d) 0		
14.	(a) -8 If $f(x) = \frac{x}{x+1}$, then	its differential i	s given	by	21 (10 m) 12		10 - MO3 Ge	117
	(a) $\frac{-1}{(x+1)^2} dx$	(b) $\frac{1}{(r+1)^2}$	dx	(c) $\frac{1}{x+1} dx$		(d) - x	$\frac{1}{+1}$ dx	V 4 . 1
15.	The solution of the d	ifferential equa	tion $\frac{dy}{dt}$	$\frac{1}{x} + \frac{1}{\sqrt{1-x^2}} = 0$	o is		ino sit be	38 F)
	J. C. (1921) 1 25	(h) x + sin-1	v = 0	(c) $v^2 + 2\sin^2\theta$	$1^{-1}x = c \ (c$	1) $x^2 +$	$-2\sin^{-1}y$	= 0
16.	(a) $y + \sin^{-1} x = c$ The differential equa	tion of the fam	ily of c	urves $y = Ae^x$	$+Be^{-x}$, w	here A	and B ar	e arbitrary
	constants is (a) $\frac{d^2y}{dx^2} + y = 0$	(b) $\frac{d^2y}{dx^2} - y$	= 0	(c) $\frac{dy}{dx} + y =$:0	(d) $\frac{a}{a}$	$\frac{dy}{dx} - y = 0$	
	ax (1)\ 80.13	nul ale way and	dv	* . 0 :				

17. The solution of the differential equation $\frac{dy}{dx} = e^x + 2$ is

(a) $y = e^x + C$ (b) $y = 2x + e^x + C$ (c) $y = 2xe^x + C$

 $(d) y = e^x + 2Cx$

18. The random variable X has the probability density function

$$f(x) = \begin{cases} ax + b & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$
 and $E(X) = \frac{7}{12}$, then a and b are respectively

(a) 1 and $\frac{1}{2}$

- (a) 1 and $\frac{1}{2}$ (b) $\frac{1}{2}$ and 1 (c) 2 and 1 (d) 1 and 2 19. In the set \mathbb{R} of real numbers '*' is defined as follows. Which one of the following is not a
 - (a) $a*b = \min(a,b)$
 - (c) a*b=a

- (b) $a*b = \max(a,b)$
 - (d) $a*b=a^b$
- 20. If $a*b = \sqrt{a^2 + b^2}$ on the real numbers then * is
 - (a) commutative but not associative
- (b) associative but not commutative
- (c) both commutative and associative
- (d) neither commutative nor associative

PART – II

- Note: (i) Answer any SEVEN questions.
 - (ii) Question number 30 is compulsory.

- $7 \times 2 = 14$
- 21. If A is a non-singular matrix of odd order, prove that |adj(A)| is positive.
- 22. Write the principal value of $tan^{-1} \left[sin \left(-\frac{\pi}{2} \right) \right]$
- 23. Identify the type of the conic $y^2 + 4x + 3y + 4 = 0$.
- 24. Find the foci of $9x^2 16y^2 = 144$.
- 25. Find the angle between the lines 2x = 3y = -z and 6x = -y = -4z.
- 26. Find the intervals of monotonicity for the function $f(x) = x^2 4x + 4$.
- 27. Evaluate: $\int_{0}^{1} \frac{(\sin^{-1} x)^{2}}{\sqrt{1-x^{2}}} dx$
- 28. Find the order and degree (if exists) of the differential equation $y\left(\frac{dy}{dx}\right) = \frac{x}{\left(\frac{dy}{dx}\right) + \left(\frac{dy}{dx}\right)^3}$
- 29. If X is the random variable with distribution function F(x) given by,

$$F(x) = \begin{cases} 0, & x < 0 \\ \frac{1}{2}(x^2 + x) & 0 \le x < 1 \text{ then find the probability density function } f(x) \end{cases}$$

30. If $\omega \neq 1$ is a cubic root of unity and $(1+\omega)^7 = A + B\omega$, then find A and B.

PART-III

Note:

- (i) Answer any SEVEN questions.
- (ii) Question number 40 is compulsory.

 $7 \times 3 = 21$

- 31. Find the rank of the matrix $\begin{vmatrix} 4 & -2 & 6 & 8 \\ 1 & 1 & -3 & -1 \\ 15 & -3 & 9 & 21 \end{vmatrix}$.
- 32. If α and β are the roots of the quadratic equation $2x^2 7x + 13 = 0$, construct a quadratic equation whose roots are α^2 and β^2 .
- 33. The line 3x+4y-12=0 meets the coordinate axes at A and B. Find the equation of the circle drawn on AB as diameter
- 34. Find the magnitude and direction cosines of the torque of a force represented by 3i+4j-5kabout the point with position vector 2i-3j+4k acting through a point whose position vector is 4i + 2j - 3k.
- 35. Find the local extrema for the function $f(x) = x^2 e^{-2x}$ using second derivative test.
- 36. A circular plate expands uniformly under the influence of heat. If it's radius increases from 10.5 cm to 10.75 cm, then find an approximate change in the area and the approximate percentage change in the area.
- 37. If $u = e^{2(x-y)}$, prove that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial v} = u \log u$.
- 38. Evaluate $\int_{0}^{2\pi} x \log \left(\frac{3 + \cos x}{3 \cos x} \right) dx$ using properties of integration.
- 39. Show that (i) $p \lor (\neg p)$ is a tautology (ii) $p \land (\neg p)$ is a contradiction.
- 40. The population of a city grows at the rate of 5 % per year. Calculate the time taken for the population doubles. [Given log 2 = 0.6912]

Note: Answer all the questions.

- $7 \times 5 = 35$
- 41. (a) Determine the values of λ for which the following system of equations $x+y+3z=0; 4x+3y+\lambda z=0; 2x+y+2z=0$ has
 - (i) a unique solution (ii) a non-trivial solution.

(OR)

- (b) If $\cos\alpha + \cos\beta + \cos\gamma = \sin\alpha + \sin\beta + \sin\gamma = 0$ then show that
 - (i) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$ and
 - (ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3\sin(\alpha + \beta + \gamma)$
- 42. (a) Solve the equation $z^3 + 8i = 0$, where $z \in \mathbb{C}$. (OR)
- (b) Draw the curve $\sin x$ in the domain $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ and $\sin^{-1} x$ in [-1,1].

43. (a) The eccentricity of an ellipse with its centre at the origin is $\frac{1}{2}$. If one of the directrix is x = 4, then find the equation of the ellipse.

(OR)

- (b) If the straight lines $\frac{x-1}{2} = \frac{y+1}{\lambda} = \frac{z}{2}$ and $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{\lambda}$ are coplanar, find λ and cartesian equations of the planes containing these two lines.
- 44. (a) Find the angle between $y = x^2$ and $y = (x-3)^2$.

(OR)

- (b) Let $w(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, $(x, y, z) \neq (0, 0, 0)$. Show that $\frac{\partial^2 w}{\partial x^2} + \frac{\partial^2 w}{\partial y^2} + \frac{\partial^2 w}{\partial z^2} = 0$.
- 45. (a) Using integration, find the area of the region bounded by the triangle whose vertices are (-1,2),(1,5) and (3,4).

(OR)

- (b) Solve: $(1+2e^{x/y})dx + 2e^{x/y}\left(1-\frac{x}{y}\right)dy = 0$.
- 46. (a) The probability density function of X is given by $f(x) = \begin{cases} 16xe^{-4x} & \text{for } x > 0 \\ 0 & \text{for } x \le 0 \end{cases}$ Find the mean and variance of X.

(OR)

- (b) Verify (i) closure property (ii) associative property (iii) existence of identity
 (iv) existence of inverse and (v) commutative property for the operation +₅ on Z₅ using table corresponding to addition modulo 5.
- 47. (a) If $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j}$ and $\vec{c} = \hat{j} \hat{k}$, verify that $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c})\vec{b} (\vec{a} \cdot \vec{b})\vec{c}$

(OR)

(b) Evaluate: $\int_{0}^{\frac{\pi}{2}} \frac{dx}{4\sin^2 x + 5\cos^2 x}$.

W 'show that (i) $D \setminus \{b\}$) is a factor

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

N	MODEL OF
Time Allowed: 15 Min + 3.00 I	MODEL QUESTION PAPER - 5
Instructions: (a)	rours

(a) Check the question paper for fairness of printing. If there is any [Maximum Marks:90 lack of fairness, inform the Hall Supervisor immediately. (b) Use Blue or Black ink to write and underline and pencil to draw

(i) All questions are compulsory.

(ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.

PART-I

1. If A is a 3×3 matrix such that |3adjA|=3 then |A| is equal to

(a)
$$\frac{1}{3}$$
 (b) $-\frac{1}{3}$ (c) $\pm \frac{1}{3}$ (d) ± 3

2. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

3. z_1, z_2 and z_3 be complex numbers such that $|z_1 + z_2 + z_3| = 0$ and $|z_1| = |z_2| = |z_3| = 1$ then $z_1^2 + z_2^2 + z_3^2$ is

(a) 3 (b) 2 (c) 1 (d) 0 4. The value of $i^{201} + i^{202} + i^{203}$ is (a) 1 (b) i (c) -i (d) -1

5. If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is

(a) $\frac{1}{2}$ (b) 1

6. If f and g are polynomials of degrees m and n respectively, and if $h(x) = (f \circ g)(x)$, then the degree of h is $(d)n^m$

(b) m+n (c) m^n Model Question Papers

329

- 33. The maximum and minimum distances of the Earth from the Sun respectively are 152×10% and $94.5 \times 10^6 km$. The Sun is at one focus of the elliptical orbit. Find the distance from ϵ
- 34. If $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{c} = 3\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{a} \times (\vec{b} \times \vec{c}) = l\vec{a} + m\vec{b} + n\vec{c}$, find the values of l, m, n.
- 35. Find two positive numbers whose product is 20 and their sum is minimum.
- 36. Find the approximate value of $\sqrt[4]{31}$.
- 37. Find the area of the region bounded by 2x-y+1=0, y=-1, y=3 and y-axis.
- 38. Find the differential equation for the function $y=2(x^2-1)+ce^{-x^2}$ where c is an arbitan
- 39. If $X \sim B(n, p)$ such that 4P(X=4) = P(x=2) and n=6. Find the distribution, mean
- 40. If $x + iy = \sqrt{\frac{a + ib}{c + id}}$, prove that $x^2 + y^2 = \sqrt{\frac{a^2 + b^2}{c^2 + d^2}}$

PART - IV

Note: Answer all the questions.

 $7 \times 5 = 35$

- 41. (a) Test for consistency and if possible, solve the system of equations 2x-y+z=2, 6x-3y+3z=6, 4x-2y+2z=4.
 - (b) Find the all cube roots of $\sqrt{3} + i$
- 42. (a) Find a polynomial equation of minimum degree with rational coefficients, having (OR)
 - (b) If D is the midpoint of the side BC of a triangle ABC, then show by vector method the $\left| \overrightarrow{AB} \right|^2 + \left| \overrightarrow{AC} \right|^2 = 2 \left(\left| \overrightarrow{AD} \right|^2 + \left| \overrightarrow{BD} \right|^2 \right).$
- 43. (a) Show that the straight lines $\vec{r} = (5\hat{i} + 7\hat{j} 3\hat{k}) + s(4\hat{i} + 4\hat{j} 5\hat{k})$ and $\vec{r} = (8\hat{i} + 4\hat{j} + 5\hat{k}) + t(7\hat{i} + \hat{j} + 3\hat{k})$ are coplanar. Find the vector equation of the plane in which they lie. (OR)
 - (b) The volume of a cylinder equals V cubic cm, where V is a constant. Find the condition that minimize the total surface area of the cylinder.

- 44. (a) If the curves $ax^2 + by^2 = 1$ and $cx^2 + dy^2 = 1$ intersect each other orthogonally then, (OR)
 - (b) Let $z(x, y) = xe^y + ye^{-x}, x = e^{-t}, y = st^2, s, t \in \mathbb{R}$. Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$.
- 45. (a) Prove that $\int_0^{\frac{\pi}{4}} \log(1 + \tan x) dx = \frac{\pi}{8} \log 2$. (OR)
 - (b) Solve: $\frac{dy}{dx} = \frac{x y + 5}{2(x y) + 7}$
- 46. (a) The sum of mean and variance of a binomial distribution for five trails is 1.8. Find the distribution. (OR)

(NO) I to move the control (NO)

The source of the four values of Cos - 100 to the source of the source o

- (b) Establish the equivalence property $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
- 47. (a) Solve $\cos\left(\tan^{-1}x\right) = \sin\left(\cot^{-1}\frac{3}{4}\right)$ where sideline from to the solution and the solution of the
 - (b) Find the equation of the circle through the points (1,0), (-1,0), and (0,1).

The valer of sin (look 4 1)) and (1 - lane with the valer of sin land with the valer of the vale

HIGHER SECONDARY SECOND YEAR

MATHEMATICS

MODEL QUESTION PAPER - 6

[Maximum Marks:36

Time Allowed: 15 Min + 3.00 Hours]

Instructions:

- Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
- Use Blue or Black ink to write and underline and pencil to draw (b) diagrams.

PART – I

Note:

(i) All questions are compulsory.

 $20 \times 1 = 20$

- (ii) Choose the correct or most suitable answer from the given four alternatives. Write the option code and the corresponding answer.
- 1. If $\rho(A) = \rho([A|B])$, then the system of linear equations AX = B is
 - (a) consistent and has a unique solution (b) consistent
- - (c) consistent and has infinitely many solution (d) inconsistent
- 2. Let A be a non-singular matrix then which one of the following is false

 - (a) $\left(\operatorname{adj} A\right)^{-1} = \frac{A}{|A|}$ (b) I is an orthogonal matrix
 - (c) $adj(adjA) = |A|^n A$ (d) If A is symmetric then adjA is symmetric
- 3. If $z = \frac{\left(\sqrt{3} + i\right)^3 (3i + 4)^2}{\left(8 + 6i\right)^2}$, then |z| is
 - (a) 0

(b) 1

- (d) 3
- 4. The continued product of the four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{2}\right)^{\frac{3}{4}}$ is
 - (a) 1

- 5. The value of $\sin^{-1}(2\cos^2 x 1) + \cos^{-1}(1 2\sin^2 x)$ is

 - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$
- (c) $\frac{\pi}{4}$
- 6. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$ and $\frac{x^2}{a^2} \frac{y^2}{h^2} = -1$ is

	[2] 7(4)	(b) $2(a^2+b^2)$		$(d)\frac{1}{2}(a^2+b^2)$
7.	An ellipse has <i>OB</i> as sem Then the eccentricity of t	ne empse is		
	(a) $\frac{1}{\sqrt{2}}$	(b) $\frac{1}{2}$	(c) $\frac{1}{4}$	
8.	If $\vec{a}, \vec{b}, \vec{c}$ are three non-co	planar unit vectors suc	h that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{(b)}{3}$	$\frac{+\vec{c}}{\sqrt{2}}$, then the angle
	between a and b is		k (f)	1) a (8)
	(4)	4	$(c)\frac{\pi}{4}$	The second second
_	The equation of the plan	e passing through (3,4,	,5) and parallel to the J	plane
9.	x+2y-2z-9=0 is			
	(a) $x+2y-2z=4$	(b)x+2y-2z=3		(d) $x + 2y - 2z = 5$
10.	If $[\vec{a}, \vec{b}, \vec{c}] = 1$, then the	value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a})}{(\vec{a})}$	$\frac{\overrightarrow{(c \times a)}}{\times \overrightarrow{b}) \cdot \overrightarrow{c}} + \frac{\overrightarrow{c} \cdot (a \times b)}{(\overrightarrow{c} \times \overrightarrow{b}) \cdot \overrightarrow{a}} \text{ is}$	la vine samen i sessor
	(a) 1	(b) -1	(c) 2 represent 08 120	
11	The slope of the line nor	mal to the curve $f(x)$	$=2\cos 4x \text{ at } x - \frac{1}{12}$	shared fi
11.	The stope of the line are		k bad. 10- 5	
	(i) $-4\sqrt{3}$	(ii) -4	12	(iv) 4√3
	(1) $-4\sqrt{3}$ The number given by the	the same for the	ne function $x^3 - 3x^2, x$	$\in [0,3]$ is
12.	The number given by the	e Rolle's theorem for the	2 7 7 7 7 1 1 2 11 10 811 144	41) 2
	(a) 1	(b) $\sqrt{2}$	$(c) \frac{3}{2}$	(d) 2 et eigens als bar?
	- White the	f = f is equal	al to	2. 17 6
13.	If $f(x, y, z) = xy + yz + z$	zx , then $J_x - J_z$ is $z=1$	(c) $x-z$	(d) $y-x$
	(2) $z-r$	(b) y 2	mail water nation agreed	
	Const dt th	$en \frac{df}{dt} =$		14人、一つした
14.	If $f(x) = \int_0^x t \cos t dt$, th	dx	(c) $x\cos x$	(d) $x\sin x$
	(a) $\cos x - x \sin x$	(b) $\sin x + x \cos x$	(c) x cosx	
	$\frac{\pi}{2}$			
	$\int_{0}^{2} \frac{\sin x}{1-\cos x}$	-dx is		majero odi emi
15.	The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\sin x}{2 + \cos x}$	x	on he spinsofer think	(d) log4
	2	and and a	(c) log 2	
	(a) 0	(b) 2		Model Question Papers

16. The order and degree of the differential ed (a) 2, 3 (b) 3, 3	quation $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^1$	$+x^{1/4}=0$ a	го генресц _у
(a) 2, 3 (b) 3, 3	(c) 2, 6	(d)	2, 4
17. The solution of the differential equation 2	$2x \frac{dy}{dx} - y = 3 \text{ represe}$	(d)	ellipse
(a) straight mics	OF ON	d m = 0 % 1110	right applicable is
of X is $(a) 6 \qquad (b) 4$	(c) 3	(d)	2 Variable d
18. A random variable X has binomial distribution of X is (a) 6 (b) 4 19. If $f(x) = \begin{cases} 2x & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$ is a probabilation of a is	ity density function of	or a random v when we have	variable, the value
(a) 1 (b) 2 20. Subtraction is not a binary operation on	(c) 3	(d)	4 Agenta
20. Subtraction is not a binary operation on (a) \mathbb{R} (b) \mathbb{Z} PA	(c) N RT – II	e di Tradi	i Consenti Ma
Note: (i) Answer any SEVEN questions.	p. direct		7×2=
(ii) Question number 30 is compulsory.	1 M 1 M 1 M 1	iyyyde r	
21. If $adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$, find A^{-1} .	The season of the first	our an our	en yene and hi
22. Express $-1+i\sqrt{3}$ in polar form. 23. Find centre and radius of the circle $2x^2$	$+2y^2-6x+4y+2$	= 0 :	
24. Find the angle between the straight line $2x-y+z=5$.	$\vec{r} = (2\hat{i} + 3\hat{j} + \hat{k}) + t$	$\left(\hat{i}-\hat{j}+\hat{k} ight)$ an	d the plane

25. Explain why Lagrange mean value theorem is not applicable to the function

$$f(x) = \left| \frac{1}{x} \right|, x \in [-1,1].$$

- 26. Evaluate: $\int_{0}^{1} \frac{|x|}{x} dx$
- 27. Form the differential equation of the family of parabolas $y^2 = 4ax$, where a is an additional equation of the family of parabolas $y^2 = 4ax$, where a is an additional equation of the family of parabolas $y^2 = 4ax$, where a is an additional equation of the family of parabolas $y^2 = 4ax$, where $y^2 = 4ax$, where $y^2 = 4ax$

- 28. Compute P(X=k) for the binomial distribution, B(n,p) where n=10, $p=\frac{1}{5}$, k=4
- 29. Write the statements in words corresponding to $\neg p$, $q \lor \neg p$, where p is 'It is cold' and q is 'It is raining.'.
- 30. Find the value of $\cos^{-1}\left(\frac{1}{2}\right) 2\sin^{-1}\left(-\frac{1}{2}\right)$

PART-III

(i) Answer any SEVEN questions. Note:

- (ii) Question number 40 is compulsory.
- 31. Find the adjoint of the matrix $A = \begin{vmatrix} 1 & 3 \\ 2 & -5 \end{vmatrix}$ and verify that A(adjA) = (adjA)A = |A|I.
- 32. Show that the points 1, $-\frac{1}{2} + \frac{i\sqrt{3}}{2}$ and $-\frac{1}{2} \frac{i\sqrt{3}}{2}$ are the vertices of the equilateral triangle.
- 33. Find the equation of the hyperbola with vertices $(0,\pm 4)$ and foci $(0,\pm 6)$.
- 34. If the two lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-m}{2} = z$ intersect at a point, find the
- 35. If $w(x, y) = xy + \sin(xy)$, then prove that $\frac{\partial^2 w}{\partial y \partial x} = \frac{\partial^2 w}{\partial x \partial y}$
- 36. Evaluate : $\int_{1+\sec^2 r}^{\frac{\pi}{3}} \frac{\sec x \tan x}{1+\sec^2 r} dx$.
- 37. Solve: $\frac{dy}{dr} = \sqrt{\frac{1-y^2}{1-r^2}}$.
- 38. Form the differential equation of $y = e^{3x} (C\cos 2x + D\sin 2x)$, where C and D are arbitrary constants.
- 39. Solve: $y^2 + x^2 \frac{dy}{dx} = xy \frac{dy}{dx}$
- 40. Find the equation of the tangent to the curve $x^2y-x=y^3-8$ at x=0

Note: Answer all the questions.

41. (a) Find the inverse of the non-singular matrix $A = \begin{bmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$, by elimentary

transformations.

(OR)

Model Question Papers

- (b) If z = x + iy and $\arg\left(\frac{z-1}{z+1}\right) = \frac{\pi}{2}$, then show that $x^2 + y^2 = 1$ (x = X) Singular and x = 1
- Less two states of the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution. (On)
 - (b) Solve $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, if $6x^2 < 1$.
- 43. (a) An elliptical whispering room has height 5m and width 26m. Where should two persons stand if they would like to whisper back and forth and be heard. (OR)
 - (b) Show that the four points (6,-7,0), (16,-19,-4), (0,3,-6), (2,-5,10) lie on a same plane.
- 44. (a) Show that the straight lines x+1=2y=-12z and x=y+2=6z-6 are skew and hence find the shortest distance between them. (OR)
- (b) If we blow air into a balloon of spherical shape at a rate of 1000cm³ per second. At what rate the radius of the baloon changes when the radius is 7cm? Also compute the rate at which the surface area changes.
- 45. (a) If an initial amount A_0 of money is invested at an interest rate r compounded n times a year, the value of the investment after t years is $A = A_0 \left(1 + \frac{r}{n}\right)^{n}$. If the interest is compounded continuously, (that is $n \to \infty$) show that the amount after t years is $A = A_0 e^{rt}$. (OR)
 - (b) If $u = \sec^{-1}\left(\frac{x^3 y^3}{x + y}\right)$, show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 2\cot u$
- 46. (a) The curve $y = (x-2)^2 + 1$ has a minimum point at P. A point Q on the curve is such that the slope of PQ is 2. Find the area bounded by the curve and the chord PQ. (OR)
 - (b) Prove that $p \to (\neg q \lor r) \equiv \neg p \lor (\neg q \lor r)$ using truth table.
- 47. (a) An equation relating to the stability of an aircraft is given by $\frac{dv}{dt} = g \cos \alpha kv$, where g, α , k are constants and ν is the velocity. Obtain an expression in terms of ν if $\nu = 0$ when t = 0. (OR)
 - (b) Four fair coins are tossed once. Find the probability mass function, mean and variance for number of heads occurred.

(HO)